LÍQUIDOS Y ELECTRECTROLÍTOS

Interna Bárbara Barrera Solís Docente Dr. Gerardo Flores 07/11/2025

DEFINICIONES

Homeostasis "Equilibrio de fluidos en los compartimientos corporales, que se mantiene por la ingesta y excreción de agua y electrolitos"

AGUA CORPORAL TOTAL:

LEC (intravascular + intersticio) + **LIC**

Los requerimientos de L-E son proporcionales al área de superficie corporal y al gasto calórico (NO al peso).

Todas estas características contribuyen a que un RNPT tenga mayores requerimientos y > % de agua corporal (> en prematuros)

INMADUREZ RENAL = ♥ de . . .

- Filtración glomerular
- Concentración de orina
- Capacidad de conservar Na
- Secreción de HCO3, K, H+

BALANCE HÍDRICO

- 1. Pérdidas insensibles de agua (35%): 30-60 ml/kg/día lo que puede llegar incluso hasta 100 ml/kg/día en los menores de 1000 g.
- Respiracion
- Sudor
- Llanto
- Cuna radiante
- Fototerapia
- Lesiones en piel
- 2. Pérdidas urinarias de agua: 30-100 ml/kg/día.
- 3. Pérdidas electrolíticas:
 - Sodio: 3-4 mEq/kg/día, la que puede ser varias veces más alta en prematuros < de 1000 g. hasta (6 a 8 mEq/kg/día).
 - Potasio: 2-3 mEq/kg/día.

- Orina 60%
- Heces 5%
- Vómitos

Terapia de mantención:

- **H2O:** 60-160 ml/kg/día.
- Sodio: 3-4 mEq/kg/día.
- Potasio: 2-3 mEq/kg/día.

BALANCE HÍDRICO

Madurez	Inversamente proporcional al peso y EG	
T° ambiental (por sobre ATN)	Aumenta en proporción a incremento de T°	
T° corporal	Aumenta hasta en 300% a T° rectal >37.2°C	
Humedad ambiental o inspirada elevada	Reduce en 30% si iguala P° de vapor de piel o tracto respiratorio	
Lesiones dérmicas	Aumenta según extensión de la lesión	
Defectos congénitos de piel (ej. Onfalocele)	Aumenta según extensión de la lesión	
Calefactor radiante	Aumenta alrededor de 50% en relación a incubadora	
Fototerapia	Aumenta hasta 50% y 100% en prematuro extremo	
Cubierta plástica	Reduce entre 10 y 30%	

Tabla 2. Perdidas insensibles de agua (PI)* en RN pretérminos.

Peso al nacer (gr.)	Pérdidas insensibles Promedio (ml/kg/día)	Pérdidas insensibles Promedio (ml/kg/hora)
750 - 1000	64	2,6
1001 - 1250	56	2,3
1251 - 1500	38	1,6
1501 - 1750	23	0,95
1751 - 2000	20	0,83
2001 - 3250	20	0,83

^{*}PI media para RN en incubadoras durante la primera semana de vida.

H-E

Historia: Antecedentes del RN

- Asfixia neonatal
- Cardiopatia congenita
- Sd. Distress respiratorio
- Enterocolitis necrotizante
- Malformaciones GI

Clinica:

- EF: FC y PA, edema, turgencia de la piel, tensión de fontanelas, humedad de mucosas.
- Peso c/12-24 horas
- Diuresis horaria: 1 5 ml/kg/dia
- Balance hídrico (ingresos egresos) c/24 hrs o menos.

Laboratorio:

ELP, GS, BUN, Crea. Osm Urinaria, EL urinarios, FeNa

MANEJO H-E

1. VOLUMEN DE AGUA

Valores aproximados según el día de vida. **ml/Kg/día** Se puede aumenta 20 ml/kg/día mientras presente baja de peso adecuada.

Volumenes	RNT	RNPT
Día 1	60 ml/kg	60-80 ml/kg
Día 2	80 ml/kg	80-100 ml/kg
Día 3	100 ml/kg	100-120 ml/kg
Día 4	100-120 ml/kg	110-130 ml/kg
Día 5	120-140 ml/kg	120-150 ml/kg
Día 6	130-150 ml/kg	130-160 ml/kg
Día 7	140-160 ml/kg	140-170 ml/kg
Día 8 y más	150-180 ml/kg	150-200 ml/kg

2. CARGA GLUCOSA

Carga inicio: 4-6 mg/kg/min

- → Se incrementa 1 -2 mg/kg/min por día según tolerancia
- → **SG 10%** usado en neonatología
- → Glicemia normal = 60 150

3. ELECTROLITOS

Sodio: 3 - 5 mEq/kg/dia.

→ Evitar aportar Na las primeras 48-72 hrs hasta diuresis fisiológica y caída del peso de al menos 6%.

Potasio: 2 - 3 mEq/Kg/dia.

→ Comenzar una vez que se haya iniciado diuresis y confirmado adecuada función renal (48-72 hrs).

4. TONICIDAD

Tonicidad de una solución comparada con la del plasma (aprox. 140 mEq/L pediatria, 51 mEq/L Neo).

Dada por la concentración de Na+ en el Suero.

- **Hipotónica** < tonicidad que el plasma.
- **Isotónica** = tonicidad que el plasma.
- **Hipertónicas** > tonicidad que el plasma.

SOLUCIONES MADRE

Pediatría

SG 5% 500cc + NaCl 10% 40cc + KCl 10% 10cc

> Para calcular tonicidad 1cc --- 1.7 mEq 40cc --- x mEq

X = 68.4 mEq de Na en 40 cc de NaCl 10%

Para calcular tonicidad, llevar a 1 Lt

500cc --- 68.4 mEq 1000cc --- x mEq

X = 136.8 -> 140 mEg/L

Solución madre isotónica

Neonatología

SG 10% 100cc + NaCl 10% 3cc + KCl 10% 1.5cc

> Para calcular tonicidad 1cc — 1.7 mEq 3cc — x mEq

X = 5.1 mEq de Na en 3 cc de NaCl 10%

Para calcular tonicidad, llevar a 1 Lt

100cc --- 5.1 mEq 1000cc --- x mEq

X = 51 mEq/L Solución madre hipotónica (rango mínimo permitido)

PREPARACIÓN SG 7.5% - 12.5% - 15%

Suero Glucosado al 7.5%

- Suero glucosado 7.5%
 - 50% de suero glucosado al 10% + 50% de suero glucosado al 5%
 - 1000cc de glucosado 7.5%: 500cc glucosado 10% + 500cc glucosado 5%
 - 500cc de glucosado al 7.5% : 250cc glucosado 10% + 250cc glucosado 5 %

Suero Glucosado al 12.5%

- Se debe usar 50% volumen de suero glucosado al 20% + 50% volumen de suero glucosado al 5%.
- Ejemplo 1: Preparar 500 cc suero glucosado al 12.5% (12.5 grs de glucosa por 100 cc → 62.5 grs en 500 cc)
 - 250 cc SG 20 % (20 gr glucosa por 100 cc → 50 gr en 250 cc)
 - 250 cc SG 5 % (5 gr glucosa por 100cc → 12.5 gr en 250 cc)

Suero Glucosado al 15 %

- Se debe usar 50% volumen de suero glucosado al 20% + 50% volumen de suero glucosado al 10 %.
- Ejemplo 1: Preparar 1000 cc suero glucosado al 15 % (15 grs de glucosa por 100 cc → 150 grs en 1000 cc)
 - 500 cc SG 20 % (20 gr glucosa por 100 cc → 100 gr en 500 cc)
 - 500 cc SG 10 % (10 gr glucosa por 100 cc → 50 gr en 500 cc

- RNT 38 SDG, AEG. PN 2940 grs.
- Ant madre DM IR, HTA crónica. Buen control.
- APGAR 9-9
- Nace por parto vaginal, sin complicaciones.

1º día de vida:

 Se mantiene activo sin signos de Hipoglicemia y/o dificultad respiratoria.

2º día de vida:

 HGT de control con valor de 40 mg/dL que se maneja con Fl 30cc (10cc/kg).Control: HGT en 34 mg/dL

INGRESA A UTI NEO

1. APORTE DE LÍQUIDO:

Volumenes	RNT	RNPT
Día 1	60 ml/kg	60-80 ml/kg
Día 2	80 ml/kg	80-100 ml/kg
Día 3	100 ml/kg	100-120 ml/kg
Día 4	100-120 ml/kg	110-130 ml/kg
Día 5	120-140 ml/kg	120-150 ml/kg
Día 6	130-150 ml/kg	130-160 ml/kg
Día 7	140-160 ml/kg	140-170 ml/kg
Día 8 y más	150-180 ml/kg	150-200 ml/kg

Peso RN: 2940 g

1. APORTE DE LÍQUIDO:

2° DÍA DE VIDA: 80 ml x Kg (peso RN)

VT = $2.94 \times 80 = 235 \text{ ml/día} \rightarrow /24 \text{ hrs} \rightarrow 9.8 \text{ cc/hora SG al } 10\%$

2. CARGA DE GLUCOSA:

5-7 mg/kg/min. Con SG 10%

10.000 mg glucosa → 100 cc

X → **9,8** cc

980 mg glucosa en 9,8 cc/hora

980 mg/ 2.940 kg / 60 min

CG = 5.5 mg/kg/min

Peso RN: 2940 g

SG 10%

10 gr glucosa → 100 cc 10.000 mg glucosa → 100 cc 100 mg glucosa → 1 cc

INDICACIONES

- Regimen cero
- SG 10% 235 cc a 9.8 cc/hora (CG: 5.5 mg/kg/min)
- HGT cada 6 horas

3° día de vida:

BCG, diuresis (+), HGT >70 mg/dl

1. APORTE DE LÍQUIDO: 100 ml x Kg

VT = 100 x 2,94 = **294 ml/día**

Peso RN: 2940 g **Peso 3° día:** 2870 g

Volumenes	RNT	RNPT
Día 1	60 ml/kg	60-80 ml/kg
Día 2	80 ml/kg	80-100 ml/kg
Día 3	100 ml/kg	100-120 ml/kg
Día 4	100-120 ml/kg	110-130 ml/kg
Día 5	120-140 ml/kg	120-150 ml/kg
Día 6	130-150 ml/kg	130-160 ml/kg
Día 7	140-160 ml/kg	140-170 ml/kg
Día 8 y más	150-180 ml/kg	150-200 ml/kg

3º día de vida:

BCG, diuresis (+), HGT >70 mg/dl

1. APORTE DE LÍQUIDO: 100 ml x Kg

VT = 100 x 2,94 = **294 ml/día**

2. ELECTROLITOS:

Na → 4 mEq/kg/día (3-5)

4 x 2.94 = 11.76 mEq/día de Na+

1cc NaCl 10% → 1.7 mEq Na

X → 11.76 mEq Na

X= 6.91 cc de Na \approx 7 cc

Peso RN: 2940 g **Peso 3º día:** 2870 g

ELECTROLITOS

1cc NaCl 10% → 1.7 mEq Na

1cc KCl 10% → 1.34 mEq K

K → 2 mEq/kg/día (2-3)

2 x 2.94 = **5.88 mEq/día** de K+

1cc KCl 10% → 1.34 mEq K

 $X \rightarrow 5.88 \text{ mEq K}$

X = 4.38 cc de $K \approx 4$ cc

Neonatología

SG 10% 100cc + NaCl 10% 3cc + KCl 10% 1.5cc

> Para calcular tonicidad 1cc -- 1.7 mEq 3cc --- x mEq

X = 5.1 mEq de Na en 3 cc de NaCl 10%

Para calcular tonicidad, llevar a 1 Lt

100cc --- 5.1 mEq 1000cc --- x mEq

X = 51 mEq/L Solución madre hipotónica (rango mínimo permitido)

3. TONICIDAD

≈ **7 cc** → **11,9 mEq** NaCl al 10%

Calcular tonicidad, llevarlo a 1 L.

294 cc → 11,9 mEq

1000 cc → X

X = 40 mEq/L

Peso RN: 2940 g **Peso 3º día:** 2870 g

ELECTROLITOS

1cc NaCl 10% → 1.7 mEq Na

1cc KCl 10% → 1.34 mEq K

5 mEq/kg/día 5 x 2.94 = **14.7 mEq/día** de Na

1cc NaCl 10% → 1.7 mEq Na $x \rightarrow 14.7$ mEq Na x = 8.64 cc de Na ≈ **9cc**

294 cc \rightarrow 14,7 mEq 1000 cc \rightarrow X X = 50 mEq/L

Peso RN: 2940 g **Peso 3° día:** 2870 g

4. ALIMENTACIÓN ENTERAL:

Iniciar según tolerancia

LM o F1: **10 ml/3 horas x 4 veces** = **40 ml**

Si tolera, luego aumentar:

15 ml c/3 horas x 4 veces = 60 ml

5. CARGA DE GLUCOSA:

294 ml - 40 ml ≈ 250 ml → 10.4 ml/hora SG 10%

1 ml → 100 mg

10.4 → X

X = 1.040 mg

CG: 1040 mg/2.940kg/60min

CG: 5.8 mg/kg/min

INDICACIONES

LM o F1

10cc c/3 horas por 4 veces (13 cc/kg/día)

15cc c/3 horas por 4 veces.

SG 10% 250cc + NaCl 10% 9cc + KCl 10% 4cc a 10,4 cc/hr (CG 5,8 mg/kg/min), si tolera 15 cc 8,1 cc hora

NO OLVIDAR LOS APORTES DE LA NUTRICIÓN ENTERAL

Vutriente	LMPT (4ª sem)	Alprem	Similac Neo	Similac Special Care 24	Similac Special Care 30	Neocate	S26 Confort
inergia (kcal)	68	80	81.7	81	101	78	67
roteinas (g)	1.6	2.9	2	2.4	3	2.2	1.5
ipidos (g)	3.9	4	4.6	4.41	6.7	3.5	3.6
ideC (g)	7.3	8.1	8.5	8.4	7.8	8.3	7.1
Calcio (mg)	21	116	86	146	183	89	42
ásforo (mg)	13	77	50.8	88	101	63.8	24
iodio (mg)	17	51	27.5	35	44	30	16
otasio (mg)	49	120	117	105	131	84.6	65
Hierro (mg)	0.1	1.8	1.4	1.5	1.8	1.2	8.0
linc (µg)	373	1200	990	1210	1522	850	600
/it A (UI)	48	1200	379	1015	1268	216	190
/it D (UI)	8	148	57.2	122	152	56	48

4º día de vida:

- BCG, diuresis (+), Deposiciones (+)
- HGT 100-102 mg/dl. Sin signos de hipoglicemia

ALIMENTACIÓN:

Aporte enteral por LM o F1

VT = <u>110</u> x 2,94 = **323 ml/día**

323ml/d / 8 tomas = **40 ml cada 3 horas**

Con buena tolerancia a la VO

Volumenes	RNT	RNPT
Día 1	60 ml/kg	60-80 ml/kg
Día 2	80 ml/kg	80-100 ml/kg
Día 3	100 ml/kg	100-120 ml/kg
Día 4	100-120 ml/kg	110-130 ml/kg
Día 5	120-140 ml/kg	120-150 ml/kg

130-150 ml/kg

140-160 ml/kg

150-180 ml/kg

Día 6

Día 7

Día 8 y más

Peso RN: 2940 g **Peso 4° día:** 2840 g

130-160 ml/kg

140-170 ml/kg

150-200 ml/kg

INDICACIONES

LM o F1: 40 cc c/3 hr, por 8 tomas.

Peso RN: 3500 g

- RNT 39 SDG, AEG.
- Nace con depresión respiratoria.
- Requiere reanimación con ventilación a presión positiva y masaje cardíaco.
- Se intuba y queda en ventilación mecánica por incapacidad de iniciar ventilación en forma espontánea.

1. VOLUMEN AGUA:

Volumen Total (VT) = Peso (kg) x Volumen (cc)

3,5 kg x 60 cc (día 1) = $\frac{210 \text{ cc/día}}{210 \text{ cc/día}} \rightarrow /24 \text{ hrs} \rightarrow \frac{8.8/\text{hr}}{210 \text{ cc/día}}$

2. CARGA GLUCOSA:

SG 10%: 10.000 mg → 100 cc

 $X \rightarrow 8,8 \text{ cc} = 880 \text{ mg} \text{ glucosa/peso/60 min}$

CG: 4.1 mg/kg/min

INDICACIONES

- Regimen cero
- SG 10% **210 cc** a **8.8 cc/hora** (CG: **4.1 mg/kg/min**)
- HGT cada 6 horas

Peso RN: 3500 g

- Posteriormente el paciente se hipotensa (dificil medir con manguito) y requiere instalar vía arterial para medición invasiva.
- Vía requiere 1 cc/hr SF + 1 IU heparina.
- Goteo final 8.8 cc/hr se le resta 1 cc/hr → 7.8 cc/hr (187.2 cc/día)

CARGA GLUCOSA:

SG 10%: 10.000 mg → 100 cc

 $X \rightarrow 7.8 \text{ cc} = 780 \text{ mg} \text{ glucosa/peso/60 min}$

CG: 3.71 mg/kg/min

Suero Glucosado al 12.5%

- Se debe usar 50% volumen de suero glucosado al 20% + 50% volumen de suero glucosado al 5%.
- Ejemplo 1: Preparar 500 cc suero glucosado al 12.5% (12.5 grs de glucosa por 100 cc → 62.5 grs en 500 cc
 - o 250 cc SG 20 % (20 gr glucosa por 100 cc → 50 gr en 250 cc)
 - 250 cc SG 5 % (5 gr glucosa por 100cc → 12.5 gr en 250 cc)

SG 12.5%: 12.5 gr glucosa en 100 cc

12.500 mg en 100 cc

 $X \rightarrow 7.8 cc$

X = **975 mg** glucosa

CG = 975 mg / 3.5 kg / 60 min

CG = 4.6 mg/kg/min

¿EL FUTURO EN LA IA?

"Leveraging Machine Learning for Developing and Validating a Neonatal Acute Kidney Injury Prediction Model (NEPHRO): A Comprehensive Evidence-Based Neonatal AKI Risk Stratification Tool"

- AKI hasta en un 50% RN graves en UCIN.
- 1 Mortalidad x 8, 1 riesgo de ERC.
- Machine Learning para desarrollar y validar un modelo de predicción de riesgo de AKI neonatal llamado NEPHRO (NEonatal Protection of Health-Related Outcomes).
- Análisis retrospectivo de 8,059 neonatos en estado crítico ingresados en una NICU de nivel IV desde enero de 2017 hasta junio de 2024.
- 27 posibles factores de riesgo c/12 hrs: demografía, balance de fluidos, comorbilidades, procedimientos quirúrgicos, soporte respiratorio, medicamentos, etc.
- Prediciendo la AKI en las próximas 0 a 48 horas.
- Área bajo la curva favorable = fiable.
- 69.6% de los episodios ocurrieron sin exposición previa significativa a medicamentos nefrotóxicos (BABY NINJA)

BIBLIOGRAFÍA

- Hospital San Juan de Dios La Serena. GUÍAS DE PRÁCTICA CLÍNICA UNIDAD DE PACIENTE CRÍTICO NEONATAL HOSPITAL SAN JUAN DE DIOS LA SERENA. Chile, 2020.
- Hospital Puerto Montt. Seminario hidroelectrolíticos. Rescatado en www.neopuertomontt.com
- Hospital San José. Guía práctica clínica Unidad de neonatología. Santiago, Chile, 2016. http://www.manuelosses.cl/BNN/gpc/Manual%20Neo_H.SnJose_2016.pdf. .
- Del Rosal Rabes, T., Sáenz de Pipaón Marcos, M., Martínez Biarge, M., Dorronsoro, I., & Quero Jiménez, J. (2008). Alimentación parenteral, líquidos y electrolitos. En Protocolos Diagnósticos Terapeúticos de la AEP: Neonatología. Asociación Española de Pediatría. https://www.aeped.es/sites/default/files/documentos/12_1.pdf
- Mohamed T, Bambach S, Spencer JD, Rust L, Patel S, Magers J, et al. Leveraging Machine Learning for Developing and Validating a Neonatal Acute Kidney Injury Prediction Model (NEPHRO): A Comprehensive Evidence-Based Neonatal AKI Risk Stratification Tool. [Manuscrito/Preprint]. 2025.

