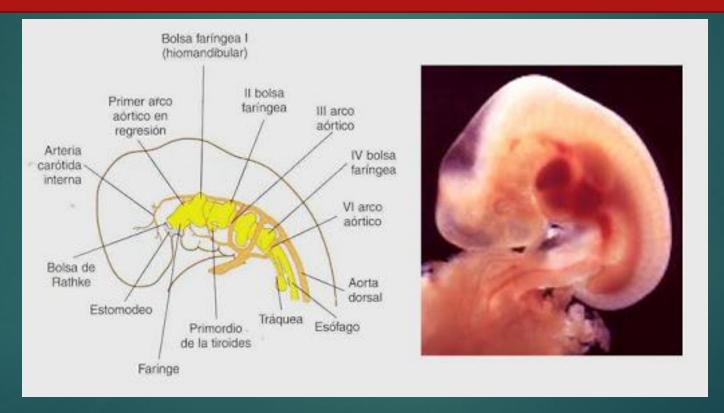
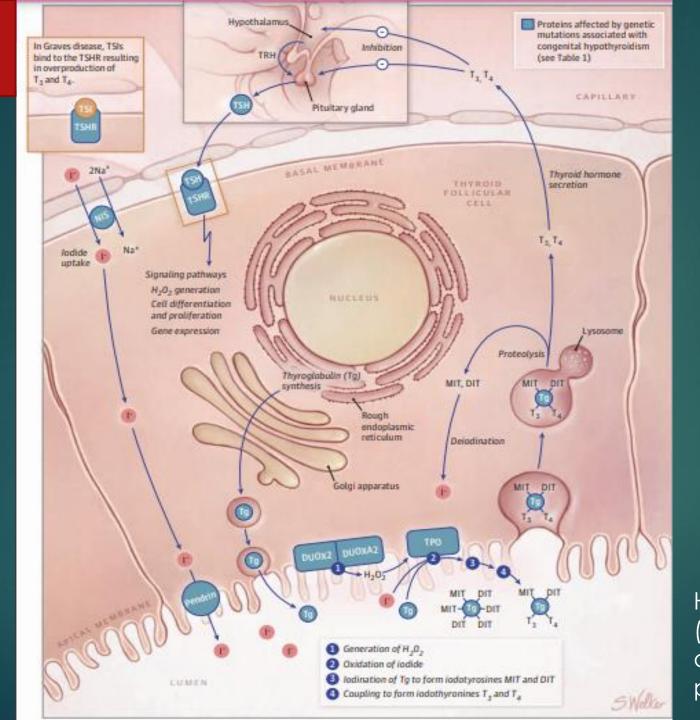

Hipotiroidismo congénito

Franco Araya – Interno pediatría Dr. Gerardo Flores - Neonatólogo



- ▶ La función normal de la glándula tiroides es fundamental para el desarrollo neurocognitivo temprano, así como para el crecimiento y el desarrollo durante la niñez y la adolescencia. Los trastornos de la tiroides son comunes, y la atención a los hallazgos del examen físico, combinada con herramientas seleccionadas de laboratorio y radiológicas, ayuda en el diagnóstico y tratamiento temprano.
- ▶ El <u>hipotiroidismo</u> se define como un nivel bajo o ausencia de hormonas tiroideas. Puede estar presente al nacer (congénito) o desarrollarse más tarde en la vida (adquirido). El hipotiroidismo primario, debido a defectos en la propia glándula tiroides, es la causa más común de hipotiroidismo. El hipotiroidismo secundario o central ocurre como consecuencia de defectos a nivel de la glándula pituitaria o del hipotálamo.

El hipotiroidismo congénito (HC) ocurre en **1 de cada 1500 a 3000 recién** nacidos.


Embriogénesis: Tiroides es la primera glándula en desarrollarse en el embrión humano → 4 semanas derivado de la células epiteliales faríngeas (endodermo). Se desarrollan células foliculares con captación de yodo a la semana 11.

Producción de T4 al tercer mes.

Hanley, P., Lord, K., & Bauer, A. J. (2016). Thyroid disorders in children and adolescents: a review. JAMA pediatrics, 170(10), 1008-1019.

Biosíntesis Hormonas tiroideas

Generalidaes: Principal causa de discapacidad cognitiva prevenible en el mundo. La ausencia de clínica precoz y su alta incidencia los programas de tamizaje neonatal.

Causas

Primarias

- 1) Disembriogénesis o disgenesia (85%): ectopia (2/3), agenesia e hipoplasia tiroidea.
- 2) Dishormonogénesis (15%): herencia autosómica recesiva, por mutación de proteínas responsables del transporte, oxidación y organificación del yodo.

Secundarias

Hipotiroidismo central

Transitoria

Por la presencia de Ac antitiroideos maternos, el uso de drogas antitiroideas maternas y el déficit o exceso de yodo.

Table 1. Molecular Etiology and	Phenotype of Inheritable F	orms of Congenit	al Hypothyroidism	
Gene	Protein(s)	Chromosomal Localization	Inheritance	Phenotype (Most Severe)
Thyroid dyshormonogenesis				
NIS (OMIM 606765)	Thyroid peroxidase	2p25	Autosomal recessive	Large goiter, multinodular goiter
TG (OMIM 188450)	Thyroglobulin	8q24	Autosomal recessive	Elevated T ₂ :T ₄ ratio with low or undetectable Tg, goiter
SLC5A5 (OMIM 601843)	NIS	19p13	Autosomal recessive	Congenital or postnatal or childhood hypothyroidism, goiter with low or absent radioiodine uptake
SLC26A4 (OMIM 274600)	Pendrin	7q31	Autosomal recessive	Childhood-onset goiter (50%) with congenital, bilateral sensorineural hearing loss (enlarged vestibular aqueduct); Pendred syndrome
DUOX2 (OMIM 606759)	Dual oxidase 2	15q15.3	Autosomal recessive or dominant	Transient and/or mild elevation in thyrotropin level
DUOXA2 (OMIM 612772)	Dual oxidase maturation factor 2	15q21.1	Autosomal recessive	Thyroid dyshormonogenesis 5
Thyroid dysgenesis				
TSHR (OMIM 275200)	Thyroid-stimulating hormone receptor	14q31	Autosomal recessive or dominant	Variable; partial to total resistance to thyrotropin, normal thyroid to severe thyroid gland hypoplasia
NKX2-1 (OMIM 600635)	Thyroid transcription factor 1	14q13	Autosomal dominant	Thyroid hypoplasia with neurologic (hypotonia resulting in benign hereditary chorea) and lung abnormalities (surfactant deficiency, interstitial lung disease, and congenital cystic adenomatoid malformation)
PAX8 (OMIM 218700)	Paired box gene	2q12	Autosomal dominant	Thyroid hypoplasia (at birth or developing during childhood), urogenital malformations
FOXE1 (OMIM 241850)	Thyroid transcription factor 2	9q22	Autosomal recessive	Athyreosis with cleft palate, choanal atresia, spiky hair (Bamforth-Lazarus syndrome)
Abbreviations: T ₂ , triiodothyronin	ne; T ₄ , thyroxine.			

Clínica

- Los recién nacidos con HC son típicamente asintomáticos al nacer. Los fetos están protegidos de los efectos del hipotiroidismo por la transferencia placentaria de la hormona tiroidea materna y porque comúnmente tienen algo de tejido tiroideo funcional.
- Los <u>síntomas</u> clásicos de HC sin tratar incluyen ictericia prolongada, letargo, mala alimentación, estreñimiento y llanto ronco.
- Los <u>signos</u> más comunes son hernia umbilical, macroglosia y piel moteada. El examen físico también puede revelar bradicardia, fontanela posterior ancha, facies tosca e hipotonía con reflejos retardados

Ares Segura S, Rodríguez Sánchez A, Alija Merillas M, Casano Sancho P, Chueca Guindulain MJ, Grau Bolado G, et al. Hipotiroidismo y bocio. Protoc diagn ter pediatr. 2019;1:183-203.

Screening

Diagnóstico Se realiza con el programa de tamizaje neonatal con TSH

RNT (>37 sem): muestra a las 48 horas de vida

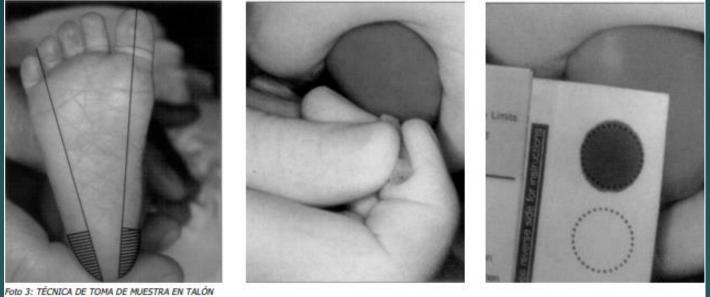
RNPT (36 sem): a los 7 días de vida

RNpT (15 mUI/mL) y esto se debe confirmar con TSH, T4 libre o T4 total en sangre venosa.

Falsos (+): 1%

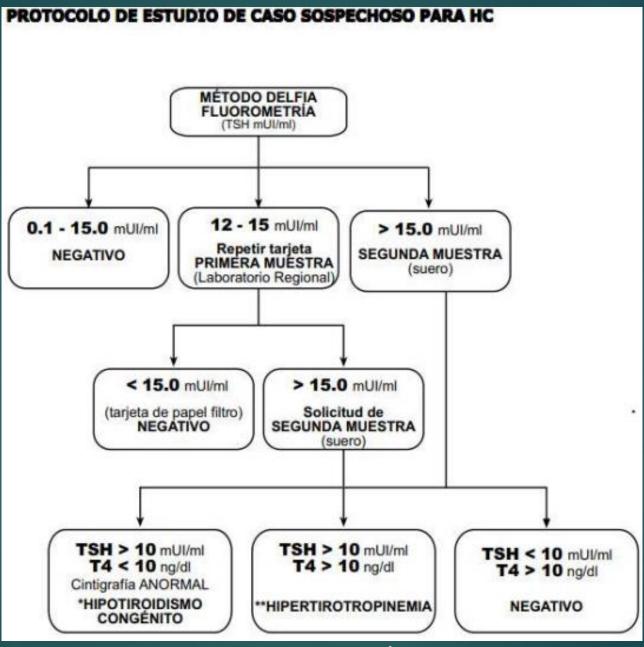
Falsos (-): 5-10%

El tamizaje es positivo cuando la TSH es > 15 mUl/mL y esto se debe confirmar con TSH, T4 libre y T4 total en sangre venosa.

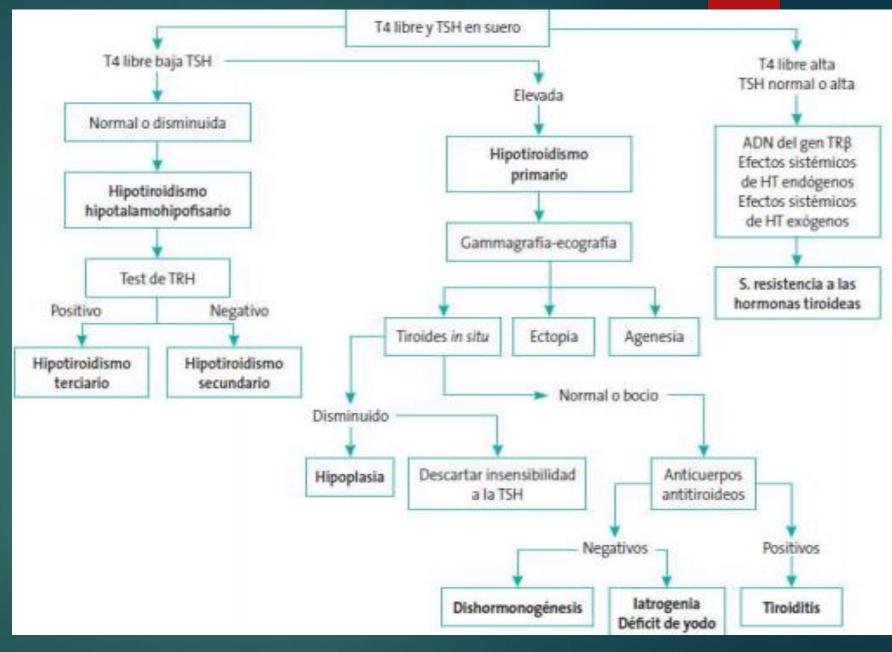

VALORES DE REFERENCIA DE HORMONAS TIROIDEA EN SUERO* (< 1 MES)

	Rango	Promedio
H.Tiroestimulante (TSH)	1.0 - 10.0 mUI/ml	5.5 mUI/ml
Tiroxina (T4)	10 - 18.8 ug/dl	14.9 ug/dl
Tiroxina Libre (T4L)	1.7 - 4.1 ug/dl	2.8 ug/dl

^{*} Los valores de referencia deberán ser establecidos por cada laboratorio según edad y método utilizado.


VALORES DE REFERENCIA DE HORMONAS TIROIDEA EN SUERO (< 1 AÑO)

	Rango	Promedio
H.Tiroestimulante (TSH)	0.4 - 6.3 mUI/ml	2.2 mUI/ml
Tiroxina (T4)	8.2 - 15.1 ug/dl	10.7 ug/dl
Tiroxina Libre (T4L)	1.5 - 2.4 ug/dl	1.7 ug/dl



Escribir correctamente la Escribir correctamente el dirección con letra clara y número de la ficha de legible. En lo posible teléfono la madre Foto 2: TARJETA PAPEL FILTRO 151 1200 No olvidar: Colocar Importante el día y la fecha de nacimiento. hora de toma de muestra

NORMAS PARA EL ÓPTIMO DESARROLLO DE PROGRAMAS DE BÚSQUEDA MASIVA DE PKU E HC. (Santiago, 2007), MINSAL.

NORMAS PARA EL ÓPTIMO DESARROLLO DE PROGRAMAS DE BÚSQUEDA MASIVA DE PKU E HC. (Santiago, 2007), MINSAL.

Estudio Hipotiroidismo congénito

Ares S, Rodríguez A, Alija M, Casano P, Chueca MJ, Grau o G. (2019). Hipotiroidismo y bocio. Protocolo diagnostico sociedad española de endocrinología pediatrica, volumen 1, 183-203.

Tratamiento

Levotiroxina 10- 15 ug/kg/día (max 50 ug/día), ojala iniciar antes de las 2 semanas de vida. Nunca atrasar el inicio del tratamiento, por esperar poder realizar el estudio de la etiología. En casos más graves (T4 total o libre muy bajos) se debe iniciar la dosis inicial más alta.

Bibliografía

- Ares S, Rodríguez A, Alija M, Casano P, Chueca MJ, Grau o G. (2019). Hipotiroidismo y bocio. Protocolo diagnostico sociedad española de endocrinología pediatrica, volumen 1, 183-203.
- ► Hanley, P., Lord, K., & Bauer, A. J. (2016). Thyroid disorders in children and adolescents: a review. JAMA pediatrics, 170(10), 1008-1019
- NORMAS PARA EL ÓPTIMO DESARROLLO DE PROGRAMAS DE BÚSQUEDA MASIVA DE PKU E HC. (Santiago, 2007), MINSAL.